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This vignette illustrates the use of the CMLC R package to compute constrained multilayer centrality
values for a simple 3 layer network where each layer is a undirected and unweighted 5 node network. The
topology of the 3 layers is shown in Figure 1. Note that this is the same example network detailed in Section
4 of the associated paper (Eigenvector centrality for multilayer networks with dependent node importance.
https://doi.org/10.48550/arXiv.2205.01478).

Figure 1: Simple undirected and unweighted 3 layer network.

1 Define adjacency matrices

For this example network, the symmetric adjacency matrices for the three layers can be specified in R as:

> layer1 = matrix(
+ c(0,1,1,0,0,
+ 1,0,1,1,0,
+ 1,1,0,0,0,
+ 0,1,0,0,1,
+ 0,0,0,1,0),
+ nrow=5, byrow=TRUE)
> layer2 = matrix(
+ c(0,1,1,0,0,
+ 1,0,0,0,0,
+ 1,0,0,1,1,
+ 0,0,1,0,1,
+ 0,0,1,1,0),
+ nrow=5, byrow=TRUE)
> layer3 = matrix(
+ c(0,1,1,1,0,
+ 1,0,0,1,0,
+ 1,0,0,0,1,
+ 1,1,0,0,1,
+ 0,0,1,1,0),
+ nrow=5, byrow=TRUE)
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Aggregate all of the layer adjacency matrices into a list:

2 No dependency scenario

First, load the CMLC library:

> library(CMLC)

If no dependencies exist between the layers (i.e., Ã = I), the eigenvector centrality values computed by
the constrained method are equivalent to those computed separately for each layer using eigen() (note that
there will likely be small deferences depending on the threshold used for power iteration with constrained-
MultiplePowerIteration()):

> cmlc.out = constrainedMultiplePowerIteration(X, A=diag(c(1,1,1)))
> cmlc.out$num.iter

[1] 13

> cmlc.out$V1[,1]

[1] 0.4969149 0.6043330 0.4969149 0.3419073 0.1550232

> abs(eigen(layer1)$vectors[,1])

[1] 0.4971537 0.6037035 0.4971537 0.3424853 0.1546684

> cmlc.out$V1[,2]

[1] 0.3419073 0.1550232 0.6043330 0.4969149 0.4969149

> abs(eigen(layer2)$vectors[,1])

[1] 0.3424853 0.1546684 0.6037035 0.4971537 0.4971537

> cmlc.out$V1[,3]

[1] 0.5299022 0.4271271 0.3577498 0.5299022 0.3577498

> abs(eigen(layer3)$vectors[,1])

[1] 0.5298991 0.4271323 0.3577512 0.5298991 0.3577512

As expected given the structure of layer 1, node 2 has the largest eigenvector centrality, followed by nodes
1 and 3 with node 5 having the lowest. Similarly for layer 2, node 3 has the largest centrality, followed by
nodes 4 and 5 with node 2 having the lowest centrality. For layer 3, nodes 1 and 4 are tied for the largest
centrality with nodes 3 and 5 tied for the lowest.
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3 Mixture of layer dependency cases A and B

If layer 1 is independent, layer 2 is dependent on just layer 1 and layer 3 is dependent on layer 2, the Ã
matrix takes the form:

> A = matrix(
+ c(1,0,0,
+ 1,0,0,
+ 0,1,0),
+ nrow=3, byrow=TRUE)

The constrained eigenvector centrality values for this scenario are:

> cmlc.out = constrainedMultiplePowerIteration(X=X, A=A)
> cmlc.out$num.iter

[1] 32

> cmlc.out$V1

[,1] [,2] [,3]
[1,] 0.4971549 0.5820177 0.4782621
[2,] 0.6037004 0.2628438 0.3910999
[3,] 0.4971549 0.5256875 0.4330112
[4,] 0.3424882 0.3446154 0.5439485
[5,] 0.1546667 0.4439159 0.3673249

Since layer 1 is still independent in this scenario, it has the same centrality values as the prior case. For
layer 2, we see the expected increase in the centrality of node 1 relative to node 3 given the importance of
their adjacent nodes in layer 1 (i.e, node 1 is adjacent to node 2, which has the largest centrality value in
layer 1; node 3 is adjacent to nodes 4 and 5, which have the lowest centrality values in layer 1). For layer
3, the centrality for node 3 has the largest change (an increase) relative to the independent scenario, which
is expected given that it is adjacent to the node with the largest centrality value in layer 2 (node 1).

4 Mixture of layer dependency cases A and B with dependencies mod-
eled by inter-layer edges

Most existing approaches for multilayer eigenvector centrality represent dependencies between layers using
inter-layer edges. For the dependency scenario outlined above, this is equivalent to all of the nodes in layer
2 have directed edges of weight 1 to the same nodes in layer 1. After introduction of these edges, the
entire multilayer network can be represented by a single network with pk nodes and the following pk × pk
adjacency matrix:

> (merged.adjacency = createMergedAdjacencyMatrix(X=X, A=A))

15 x 15 sparse Matrix of class "dgCMatrix"

[1,] . 1 1 . . . . . . . . . . . .
[2,] 1 . 1 1 . . . . . . . . . . .
[3,] 1 1 . . . . . . . . . . . . .
[4,] . 1 . . 1 . . . . . . . . . .
[5,] . . . 1 . . . . . . . . . . .
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[6,] 1 . . . . . 1 1 . . . . . . .
[7,] . 1 . . . 1 . . . . . . . . .
[8,] . . 1 . . 1 . . 1 1 . . . . .
[9,] . . . 1 . . . 1 . 1 . . . . .

[10,] . . . . 1 . . 1 1 . . . . . .
[11,] . . . . . 1 . . . . . 1 1 1 .
[12,] . . . . . . 1 . . . 1 . . 1 .
[13,] . . . . . . . 1 . . 1 . . . 1
[14,] . . . . . . . . 1 . 1 1 . . 1
[15,] . . . . . . . . . 1 . . 1 1 .

Multilayer eigenvector centrality values can then be computed usign the standard eigenvector centrality
formulation on the merged network:

> interlayerEdgeCentrality(X=X, A=A, normalize.per.layer=TRUE)

[,1] [,2] [,3]
[1,] 0.5410003 0.3889868 0.5298991
[2,] 0.5032057 0.2366012 0.4271323
[3,] 0.4750426 0.6028442 0.3577512
[4,] 0.4578841 0.4678182 0.5298991
[5,] 0.1370376 0.4587311 0.3577512

This type of approach obviously has a very distinct mathematical interpretation from an approach which
uses adjacent node importance to capture inter-layer dependencies and, as expected, the constrained cen-
trality values are very different from those generated according to the adjacent node importance technique.

5 Mixture of layer dependency cases A, B and C

If layer 1 is independent, layer 2 is dependent on just layer 1 and layer 3 is equally dependent on both layer
2 and itself, the Ã matrix takes the form:

> A = matrix(
+ c(1,0,0,
+ 1,0,0,
+ 0,0.5,0.5),
+ nrow=3, byrow=TRUE)

The constrained eigenvector centrality values for this scenario are:

> cmlc.out = constrainedMultiplePowerIteration(X, A=A)
> cmlc.out$num.iter

[1] 32

> cmlc.out$V1

[,1] [,2] [,3]
[1,] 0.4971549 0.5820177 0.5091828
[2,] 0.6037004 0.2628438 0.4064337
[3,] 0.4971549 0.5256875 0.3936928
[4,] 0.3424882 0.3446154 0.5319309
[5,] 0.1546667 0.4439159 0.3709447
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Since layers 1 and 2 have the same dependency structure as the prior scenario, the centrality values are
unchanged. As expected, the equally divided dependency structure for layer 3 yields centrality values that
are between those computed in the first two scenarios.

6 Mixture of layer dependency cases A, B and C with negative depen-
dency

If layer 1 is independent, layer 2 is dependent on just layer 1 and layer 3 has a positive dependence on itself
and a small negative dependency on layer 2, the Ã matrix takes the form:

> A = matrix(
+ c(1,0,0,
+ 1,0,0,
+ 0,-0.2,1.2),
+ nrow=3, byrow=TRUE)

The constrained eigenvector centrality values for this scenario are (note that users may want to override
the default maximum number of iterations to ensure convergence when using negative weights):

> cmlc.out = constrainedMultiplePowerIteration(X, A=A)
> cmlc.out$num.iter

[1] 96

> cmlc.out$V1

[,1] [,2] [,3]
[1,] 0.4971537 0.5820194 0.5369981
[2,] 0.6037035 0.2628434 0.4373771
[3,] 0.4971537 0.5256869 0.3422854
[4,] 0.3424853 0.3446161 0.5307609
[5,] 0.1546684 0.4439142 0.3485225

Since layers 1 and 2 have the same dependency structure as the prior scenario, the centrality values are
unchanged. While the results for layer 3 are not dramatically different relative to the prior example and
the impact of negative dependencies is not necessarily intuitive, the increase in the centrality of node 1 in
layer 3 is consistent with the fact that it now has a negative association with the smallest centrality node
in layer 2.

7 All layers are dependency case B with a cycle

If layer 1 is dependent on layer 3, layer 2 dependent on layer 1 and layer 3 dependent on layer 2, a cycle is
introduced in the layer dependency graph, the Ã matrix takes the form:

> A = matrix(
+ c(0,0,1,
+ 1,0,0,
+ 0,1,0),
+ nrow=3, byrow=TRUE)

The constrained eigenvector centrality values for this scenario are:
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> cmlc.out = constrainedMultiplePowerIteration(X, A=A)
> cmlc.out$num.iter

[1] 8

> cmlc.out$V1

[,1] [,2] [,3]
[1,] 0.3975710 0.5888889 0.4766597
[2,] 0.6811267 0.2129040 0.4036389
[3,] 0.4185482 0.5471731 0.4325420
[4,] 0.3753689 0.3573921 0.5233568
[5,] 0.2488360 0.4251520 0.3858449

If the inter-layer dependencies are instead represented by inter-layer edges, the centrality values for this
scenario are

> merged.adjacency = createMergedAdjacencyMatrix(X=X, A=A)
> interlayerEdgeCentrality(X=X, A=A, normalize.per.layer=TRUE)

[,1] [,2] [,3]
[1,] 0.4861158 0.4506616 0.5160089
[2,] 0.5547537 0.3363244 0.3972156
[3,] 0.4599116 0.5650744 0.4141969
[4,] 0.4214381 0.4485059 0.5081169
[5,] 0.2584783 0.4041329 0.3823778
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